DNA and Family History

Brief summary

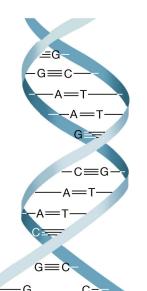
Tree Building - Genealogy Basics

- Build your tree through documents like BDMs
- Make sure you have evidence to support your tree
- DNA tests are a tool to help confirm or extend your tree

DNA Basics (see glossary)

- We have two very different types of DNA, Nuclear and Mitochondrial
- Nuclear DNA is coiled up into 23 pairs of chromosomes
- · One set came from father, the other from mother
- 22 pairs autosomal, the other pair are sex cells (X and Y)
- Males have YX sex cells, females XX

Inheritance


- Mitochondrial DNA passes from mother to all children with little change
- Y DNA passes from father to boys only with little change
- X DNA has a specific inheritance pathway
- Autosomal DNA is 'shuffled' during the making of sperm and egg cells
- This 'shuffling' (recombination) is random, but allows large segments of DNA to pass on unchanged

DNA testing

- 3 key tests (Y-DNA, mt-DNA, at-DNA)
- Multiple suppliers of autosomal tests; only one does Y-DNA and mt-DNA tests
- Each supplier has large database of potential matches
- Consider 'fishing in all ponds' for matches

The tests in summary...

TEST	USED TO -	STRENGTHS	LIMITS
Y - DNA	Find male relatives that share common ancestor in paternal line	Close matches share paternal ancestor. If close male relatives don't match, proves there's been a mistake in the tree (a NPE?)	Only males can be tested Only checks paternal line Common ancestors may have lived 100s of years ago. Doesn't 'prove' paternal relationship
MT-DNA	Find relatives that share common ancestor in maternal line	Close matches share maternal ancestor. If close female relatives don't match, proves there's been a mistake in the tree	Only checks maternal line Common ancestors may have lived many 100s of years ago Doesn't 'prove' maternal relationship
AUTOSOMAL	Find relatives that share common ancestor in any branch of your tree	Most likely will find many cousins X-matches can be useful Tools available to do significant analysis	Some relationships (3rd cousins and beyond) may not show up Hard to tell which branch Multiple companies; your relatives may not be in their databases

Where to buy the tests...

TEST	AVAILABLE FROM	COMMENTS	COSTS (EXCHANGE RATE 1 JAN16) CHECK PRICES BEFORE YOU BUY (DISCOUNTS COMMON)
Y - DNA	FamilyTreeDNA	Number of markers is important; the more markers the more \$\$\$	Y37 = \$US169 (\$A242) Y67 = \$US268 (\$A385) Y111 = \$US359 (\$A515)
MT-DNA	FamilyTreeDNA	Full sequence test can be very helpful	Full = \$US199 (\$A286)
AUTOSOMAL	FamilyTreeDNA	"Family finder" test popular with UK and Australian customers	\$US79 plus shipping
AUTOSOMAL	Ancestry	Largest database by far (over 10 million)	\$A129 plus shipping
AUTOSOMAL	23andme	Many customers use it for medical information, rather than genealogy	\$US99 plus shipping
AUTOSOMAL	Myheritage	Recent arrival; offering discounts today	\$A79 plus shipping

Test results

- Each site will display 'matches' with an estimate of closeness
- Each site has tools to help understand and analyse results
- Each site gives an estimate of 'ethnicity' not helpful for genealogy
- You can download your 'raw data' from each site
- You can upload your raw data to other sites with different analytical tools

Useful websites

- International Society of Genetic Genealogy good for background, great Wiki
- Louise Coakley (Genie1) Australian, also has a great Blog
- FamilyTreeDNA testing company: only source of Y-DNA and mt-DNA tests
- Ancestry testing company, source of genealogical info and published trees
- 23andme testing company, mostly focused on health
- MyHeritage testing company, source of genealogical info
- Gedmatch upload your raw data: free analytical tools (need to pay for Tier One tools)
- DNA Land upload your raw data: free analytical tools
- DNAGedcom upload Gedmatch processed data: free ADSA report
- **DNApainter** upload your raw data: free mapping tools

- http://isogg.org
- http://genie1.com.au/
- https://www.familytreedna.com
- http://dna.ancestry.com.au
- https://www.23andme.com/en-int/
- https://www.myheritage.com
- http://v2.gedmatch.com/login1.php
- https://dna.land
- https://dnagedcom.com
- dnapainter.com

Glossary of useful terms

(adapted from John Chandler's glossary, Edmund Rice (1638) Association, http://www.edmund-rice.org/dnagloss.htm)

\ '	Chandler's glossary, Eurhana Nice (1000) Association, http://www.eurhana-nice.org/anagioss.htm/
allele	variant of a <u>gene</u> or genetic <u>marker</u> . For <u>STR</u> markers, each allele is designated by the number of repeats of the short <u>base</u> sequence.
autosome	one of the non-sex-determining <u>chromosomes</u> . Autosomes occur in nearly identical pairs. See also \underline{X} and \underline{Y} .
base	the building block of <u>DNA</u> , one of four molecules that link up to make a DNA chain. The four are named adenine, cytosine, guanine, and thymine (A, C, G, T for short). These are also called <u>nucleotides</u> .
centiMorgan	a unit of recombinant frequency which is used to measure genetic distance. It is often used to imply distance along a chromosome, and takes into account how often recombination occurs in a region. A region with few cMs undergoes relatively less recombination.
chromosome	one of the \underline{DNA} macromolecules found in the cell nucleus. Humans have 46 chromosomes. See also \underline{X} and \underline{Y} .
CRS	the Cambridge Reference Sequence for mtDNA , used for convenience to compare with all human mtDNA sequences, such that any sequence can be expressed concisely as a relatively short list of difference from the reference
DNA	deoxyribonucleic acid. The chemical constituent of genes and chromosomes. DNA has four different <u>base</u> units, designated A, C, G, and T, which are connected in long double chains, and the sequence of these bases encodes the genetic information.
DYS	DNA Y-chromosome Segment. A label for loci or genetic markers on the Y chromosome. Each marker is designated by a number, according to international conventions. Virtually all DYS designations discussed in the context of genetic genealogy are those of STR markers (which are useful for genealogy because of their relatively high mutation rate).
gene	a meaningful sub-unit of DNA, encoding a protein.
gene conversion	a process replacing one <u>allele</u> of a pair with a copy of the other. This term is used by extension for all kinds of <u>loci</u> , not just <u>genes</u> . See also <u>recLOH</u> .
genome	the entire inventory of nuclear <u>DNA</u> in an organism.
genotype	a set of <u>allele</u> values of one or more <u>markers</u> for one individual. Since most of the <u>DNA</u> consists of nearly identical pairs of <u>chromosomes</u> , a genotype typically has two alleles for each marker, one from each parent. See also <u>haplotype</u> .
haplogroup	a classification comprising many different haplotypes thought to be related. Haplogroups are defined in terms of markers that mutate so slowly they are treated as if they have occurred only once in all time. The major haplogroups originated thousands or tens of thousands of years ago.
haplotype	a set of <u>allele</u> values of one or more <u>markers</u> for one individual and identified as coming just from one parent, particularly markers on the <u>Y chromosome</u> or in <u>mitochondrial</u> DNA. See also <u>genotype</u> .
heterozygous	having two different <u>alleles</u> in the two copies of the same <u>marker</u> or <u>locus</u> existing on a pair of <u>chromosomes</u> . By extension, this term is sometimes applied to the two copies of a locus found on opposite arms of a <u>palindrome</u> on the <u>Y</u> chromosome. See also <u>homozygous</u> .
homozygous	having the same <u>allele</u> in the two copies of the same <u>marker</u> or <u>locus</u> existing on a pair of <u>chromosomes</u> . By extension, this term is sometimes applied to the two copies of a locus found on opposite arms of a <u>palindrome</u> on the <u>Y</u> chromosome. See also <u>heterozygous</u> .
HVR1	Hypervariable Region 1. A portion of the mtDNA molecule noted for its especially high mutation rate, consisting roughly of locations 16024-16569.

HVR2	Hypervariable Region 2. (See <u>HVR1</u> .) The limits of HVR2 are even more vague than for HVR1. HVR2 is generally said to start at location 1 and to extend for a few hundred <u>bases</u> , but part of this region is often called HVR3.
locus	(plural: loci) specific site on a <u>DNA</u> chain.
marker	a distinctive sub-unit of <u>DNA</u> , often not part of a <u>gene</u> . Often used interchangeably with <u>locus</u> , but referring to the contents of the site, rather than the site itself.
microsatellite	See <u>STR</u> .
mitochondria	organelles within the cell responsible for converting food into usable energy. Each mitochondrion has its own <u>DNA</u> . The mitochondria in a child come entirely from the mother, and so mitochondrial DNA ("mtDNA" for short) is a tracer of female-line ancestry, just as <u>Y</u> DNA is a tracer for male-line ancestry.
mtDNA	See mitochondria.
mutation	An event in which the <u>DNA</u> chain alters. In the case of <u>STR</u> markers, a mutation is almost invariably the gain or loss of one repeat of the basic short sequence (or, rarely, two repeats). Other types of mutations include the substitution of one <u>base</u> for another (known as a <u>SNP</u>) and the insertion or deletion of a whole segment (known as an <u>indel</u> . See also <u>recombination</u> .
nucleotide	a unit of <u>DNA</u> . See also <u>base</u> .
organelle	any small, compact, and cohesive entity within a cell. An organelle is to a cell what an organ is to a multi-celled creature.
PCR	Polymerase Chain Reaction. A chemical process that replicates a given sample of <u>DNA</u> many times, in imitation of natural replication. The process cycles between two stages: splitting the two strands of DNA apart and then forming new double strands by adding a mixture of the enzyme polymerase and the four DNA <u>bases</u> . By adding <u>primers</u> as well, the process can be used to replicate just the one or more DNA segments of interest.
polymorphism	The occurrence of more than one form of <u>DNA</u> in different individuals, or even in different cells within one individual. Such diversity arises through the occurrence of <u>mutations</u> .
recLOH	recombinant loss of heterozygosity. See also gene conversion.
recombination	a process of "mixing and matching" of paired <u>chromosomes</u> that takes place at cell division. One or more segments may be swapped between the two chromosomes, or occasionally a segment may replace the corresponding segment on the other chromosome. This process can also occur on <u>palindromic</u> segments of the <u>Y</u> chromosome and may affect paired <u>loci</u> , such as <u>DYS</u> 385a and DYS385b.
SNP (pronounced "snip")	Single- <u>Nucleotide Polymorphism</u> . A type of <u>mutation</u> characterized by the substitution of one <u>base</u> for another, or the outright loss of a <u>base</u> .
STR	Short Tandem Repeat. Also known as microsatellite. This is a genetic <u>marker</u> consisting of multiple copies of a short <u>motif</u> , (a sequence of <u>DNA bases</u>). Occasionally, a microsatellite will mutate by the gain or loss of one repeat. So-called "simple" STRs have just one contiguous set of repeats; "complex" STRs may have multiple sets of repeats separated by short patches of non-repeating DNA and may even have repeats of more than one motif.
Х	one of the two sex-determining <u>chromosomes</u> , See also <u>Y</u> .
Υ	one of the two sex-determining <u>chromosomes</u> . A person with the combination XX is female, while a person with XY is male. Most of the Y chromosome, unlike the others, does not trade <u>DNA</u> with a "partner chromosome," and it therefore passes essentially intact from father to son. This property leads to a minimum of ambiguity in interpreting the results of Y DNA analysis.
MA and Canadan by Time Tre	Advers Delmyre WA (00) 0220 0070 years timetroekers com au